Search results for "Cellular mechanism"

showing 4 items of 4 documents

Itinéraire d’un agent double

2016

Protein S-nitrosylation is now recognized as a ubiquitous regulatory mechanism. Like any post-translational modifications, S-nitrosylation is critical for the control of numerous cellular processes. It is now clear that S-nitrosylation is playing a double game, enhancing or inhibiting the tumor growth or the induction of cell death. Thanks to research aimed at demonstrating NO cytotoxic effects, new therapeutic strategies based on NO donor drugs have emerged. Although therapeutic NO donors can target a large number of proteins, the cellular mechanism is still not fully understood. This review reflects the current state of knowledge on S-nitrosylated proteins that take part of the oncogenic …

0301 basic medicineProgrammed cell deathMechanism (biology)Cell growthGeneral MedicineBiologyGeneral Biochemistry Genetics and Molecular Biology3. Good healthNo donorsCellular mechanism03 medical and health sciences030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisCytotoxic T cellTumor growthSignal transductionNeurosciencemédecine/sciences
researchProduct

Neuromuscular Fatigue Is Not Different between Constant and Variable Frequency Stimulation

2014

International audience; This study compared fatigue development of the triceps surae induced by two electrical stimulation protocols composed of constant and variable frequency trains (CFTs, VFTs, 450 trains, 30 Hz, 167 ms ON, 500 ms OFF and 146 ms ON, 500 ms OFF respectively). For the VFTs protocol a doublet (100 Hz) was used at the beginning of each train. The intensity used evoked 30% of a maximal voluntary contraction (MVC) and was defined using CFTs. Neuromuscular tests were performed before and after each protocol. Changes in excitation-contraction coupling were assessed by analysing the M-wave [at rest (M-max) and during MVC (M-sup)] and associated peak twitch (Pt). H-reflex [at rest…

MaleAnatomy and Physiologymedicine.medical_treatmentStimulationElectromyographyCELLULAR MECHANISMSACTIVATION[SCCO]Cognitive science0302 clinical medicineVOLUNTARYHuman PerformancePsychologyEvoked potentialMusculoskeletal SystemComputingMilieux_MISCELLANEOUSMultidisciplinaryCALCIUM STORESmedicine.diagnostic_test[ SDV.MHEP.PHY ] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]ChemistryQRPRESYNAPTIC INHIBITIONHUMAN SKELETAL-MUSCLEHealthy VolunteersElectrophysiologyMental HealthNeuromuscular fatigueEXCITABILITYMuscle Fatigue[ SCCO.NEUR ] Cognitive science/NeuroscienceCardiologyMuscleMedicine[ SCCO ] Cognitive sciencemedicine.symptomMuscle ContractionResearch ArticleMuscle contractionAdultmedicine.medical_specialtyClinical Research DesignScienceQUADRICEPS MUSCLENeurological System03 medical and health sciencesInternal medicinemedicineHumansSports and Exercise MedicineBiologySoleus muscleBehaviorSurvey ResearchCONTRACTIONSElectromyography030229 sport sciencesELECTRICAL-STIMULATIONEvoked Potentials MotorElectric StimulationIntensity (physics)Transcranial magnetic stimulationPhysiotherapy and Rehabilitation030217 neurology & neurosurgery
researchProduct

Metaplasticity of horizontal connections in the vicinity of focal laser lesions in rat visual cortex

2010

Focal cortical injuries are accompanied by a reorganization of the adjacent neuronal networks. An increased synaptic plasticity has been suggested to mediate, at least in part, this functional reorganization. Previous studies showed an increased long-term potentiation (LTP) at synapses formed by ascending fibres projecting onto layers 2/3 pyramidal cells following lesions in rat visual cortex. This could be important to establish new functional connections within a vertical cortical column. Importantly, horizontal intracortical connections constitute an optimal substrate to mediate the functional reorganization across different cortical columns. However, so far little is known about their p…

PhysiologyChemistryLong-term potentiationLesionCellular mechanismmedicine.anatomical_structureVisual cortexCerebral cortexSynaptic plasticityMetaplasticitymedicinemedicine.symptomNeuroscienceCortical columnThe Journal of Physiology
researchProduct

Light on the molecular and cellular mechanisms of bicuspid aortic valve to unveil phenotypic heterogeneity

2019

Research on bicuspid aortic valve disease (BAV) and related complications has grown in an exponential manner in the last decades. However, the current knowledge of the mechanisms underlying the development of this disease is still limited, since all clinical and surgical studies on BAV mainly focused their objects on its major vascular complications, such as ascending aortic aneurysms and dissection. It is now clear that a better understanding of the pivotal molecular and cellular pathophysiological aspects of bicuspid valve aortopathy, including natural history, phenotypic expression, histology, cellular mechanisms and pathways, is critical for improving its clinical management. This chang…

molecular and cellular mechanismbicuspid aortic valvethoracicphenotypeprecision medicineaortic aneurysm thoracic; aortic valve; biomarkers; heart valve diseases; humans; precision medicine; genetic heterogeneity; phenotypeBiologyBioinformaticsheart valve diseasesgenetic heterogeneityAortic aneurysmBicuspid aortic valveBicuspid Aortic Valve DiseasemedicineSettore MED/05 - Patologia ClinicahumansMolecular BiologyAortic Aneurysm ThoracicGenetic heterogeneitybiomarkersmedicine.diseasePrecision medicineaortic valvePhenotypeCardiology and Cardiovascular Medicineaortic aneurysmJournal of Molecular and Cellular Cardiology
researchProduct